INFLUENCE OF SILICIC ACID AND GLAUCONITE ON THERMAL DEHYDRATION OF Ca(H2PO4)2·H2O

K. Tynsuaadu

TALLINN TECHNICAL UNIVERSITY, ESTONIA, E.S.S.R.

The thermal dehydration of mixtures of Ca(H2PO4)2·H2O with silicic acid and glauconite was studied by thermal (under dynamic and quasi-isothermal-quasi-isobaric conditions), Xray and chromatographic analyses.

It was found that the dehydration of $Ca(H_2PO_4)_2 \cdot H_2O$ is accelerated in the mixtures. SiO₂ · nH₂O and glauconite react with the intermediates of dehydration of Ca(H₂PO₄)₂ · H₂O, and silicophosphates and Al, K, Fe-phosphates are formed, respectively. The total degree of polymerization of calcium polyphosphates is lower in the mixtures than in Ca(PO₃)₂ itself.

Previous research has shown the thermal decomposition of $Ca(H_2PO_4)_2 \cdot H_2O$ to be a complicated polycondensation process in the course of which, depending on the experimental conditions, H_3PO_4 , $CaH_2P_2O_7$, $Ca_3(HP_2O_7)_2$ and many other forms of polyphosphates are formed as intermediates. The end-product is high-polymeric calcium phosphate, $Ca(PO_3)_2$ [1].

The aim of this research was to study the interactions of mixtures of $Ca(H_2PO_4)_2 \cdot H_2O$ with amorphous $SiO_2 \cdot nH_2O$ and glauconite in the course of heating in air up to complete dehydration.

Experimental

Thermal analysis was carried out with a Q-Derivatograph (MOM, Budapest) under dynamic conditions and under quasi-isothermal-quasi-isobaric conditions (Q), with simultaneous TG, DTG and DTA examinations.

Under dynamic conditions, the heating rate was 10 deg/min⁻¹, the amount of the sample was about 900 mg in the conventional platinum crucible.

John Wiley & Sons, Limited, Chichester Akadémiai Kiadó. Budapest Under quasi-isothermal-quasi-isobaric conditions, the heating of the furnace was controlled so that the weight change was not over 0.5 mg.min^{-1} . The amount of the sample in the labyrinth sample holder was about 300 mg.

For the mixtures with glauconite, where the quantity of water liberated from glauconite (up to 400°) is 1.4%, Δm^* (%) was calculated for Ca(H₂PO₄)₂·H₂O.

Samples for chemical, chromatographic and X-ray analyses were obtained by heating $Ca(H_2PO_4)_2 \cdot H_2O$ and the mixtures in an open crucible (2000 mg) up to the given temperature in the Derivatograph furnace at a rate of 2.5 deg/min⁻¹, and then cooled at once.

X-ray diffraction measurements were carried out with a Dron 3M (USSR) instrument ($C_{0K\alpha}$). The results are given in Table 1.

Temperature, °C	Ca(H2PO4)2·H2O +50% SiO2·nH2O	Ca(H2PO4)2·H2O +50% glauconite		
250	CaHPO4	CaHPO ₄		
	CaH2P2O7	Glauconite		
	Amorphous phase	Amorphous phase		
400	γ-Ca2P2O7	Ca(H2PO4)2 ·H2O + 50% glauconite CaHPO4 Glauconite Amorphous phase y-Ca2P2O7 Glauconite K(AI, Fe)P2O7 [4] Amorphous phase y-Ca2P2O7 &-Ca(PO3)2 K(AI, Fe)P2O7		
	δ-Ca(PO3)2	Glauconite		
	Amorphous phase	K(AI, Fe)P2O7 [4]		
600	v-Ca2P2O7	v-Ca2P2O7		
000	δ -Ca(PO ₃) ₂	γ-Ca2P2O7 δ-Ca(PO3)2 K(Al, Fe)P2O7		
	xSiO2·yP2O7 [5]			
	Amorphous phase			

Table 1 Main composition of products in heated mixtures Ca(H2PO4)2·H2O with SiO2·nH2O and glauconite by X-ray diffraction analysis

For paper-chromatographic analysis, the well-known method [2] was used. Ion-exchange on Dowex 50W was used for the dissolution of polymeric phosphates. The contents of water-soluble P_2O_5 , CaO and K_2O were determined (Table 2).

Chemicals

The Ca(H₂PO₄)₂·H₂O used was a p.a. preparation (CaO = 21.94%, P₂O₅ = 55.35%, H₂O = 22.70%).

Amorphous $SiO_2 \cdot nH_2O$ was prepared by saturation of a solution of Na₂O · 3SiO₂ with HCl, washed with water to remove Cl⁻ and dried at 90° to constant weight (SiO₂ = 93.22%, H₂O = 6.78%).

Glauconite was from the Maardu deposit (SiO₂ = 51.06%, Fe₂O₃ = 20.34%, Al₂O₃ = 10.67%, K₂O = 8.98%, H₂O = 5.60%).

 Table 2 Content of water-soluble and ion-exchange soluble phosphates in heated Ca(H2PO4)2·H2O and its mixtures with SiO2·nH2O (50%) and glauconite (50%)

Sample	Ca(H2PO4)2·H2O			Ca(H2PO4)2·H2O + SiO2·nH2O		Ca(H2PO4)2·H2O+ glauconite			
Temperature, °C	250	400	600	250	400	600	250	400	600
Content of total P2O5, %	62.5	67.8	69.5	29.9	31.2	31.5	29.1	30.2	31.0
	Ion-exc	hange so	oluble, I	2O5, %	relative	to total	P ₂ O ₅		
Monophosphate	30	10	2	60	10	10	60	3	6
Diphosphate	27	24		13	30	20	10	30	30
Polyphosphate $(n \ge 3)$	27			10	30	25	15	30	10
Sum of phosphates	84.4	34.3	1.9	82.9	67.0	54.6	85.1	62.8	45.8
	Wa	ater-solu	ble P ₂ O ₅	i, % rela	tive to to	tal P ₂ O	5		
Monophosphate	30	10	1	50	10	10	40	5	2
Diphosphate	20	5		10	8	4	10	7	
Polyphosphate $(n \ge 3)$	20	3		1	22		15	5	
Sum of phosphates	72.6	1 7.9	1.1	61.0	40.8	13.6	65.8	17.1	2.5
K2O, relative %	0	0	0	0	0	0	9.1	5.6	3.9
CaO, relative %	62.9	6.5	1.0	56.0	25.2	3.9	32.8	14.6	1.5

Results and discussion

The results of the thermal analysis show that under dynamic heating at a rate of 10 deg/min⁻¹, Ca(H₂PO₄)₂·H₂O decomposes in five stages (Fig. 1), with maximum rates at about 190, 255, 280, 365 and 440°. 1.5 mole of water is lost in the first step, 0.75 mole in the 2nd and 3rd steps, and the last 0.75 mole of water in the 4th and 5th steps.

Under Q conditions, the course of the decomposition is somewhat modified (Fig. 2). It was found that, in spite of the progressive nature of the dehydration of $Ca(H_2PO_4)_2 \cdot H_2O$, the compositions of the intermediate samples are strongly heterogeneous [1, 2].

Fig. 1 Dehydration of Ca(H2PO4)2·H2O, SiO2·nH2O and their mixtures under dynamic conditions (10 deg·min⁻¹). Open crucible .1 - SiO2·nH2O;
2 - Ca(H2PO4)2·H2O + 50% SiO2·nH2O; 3 - Ca(H2PO4)2·H2O + 20% quartz;
4 - Ca(H2PO4)2·H2O + 5% SiO2·nH2O; 5 - Ca(H2PO4)2·H2O

J. Thermal Anal., 36, 1990

Mixtures with $SiO_2 \cdot nH_2O$

The addition of 5% SiO₂ \cdot nH₂O to Ca(H₂PO₄)₂ \cdot H₂O changes the forms of the DTG, Q-TG and Q-DTA curves significantly (Figs 1 and 2). Under dynamic heating, dehydration occurs in stage 4. The last step, at 440°, disappears. If there is 50% of SiO₂ \cdot nH₂O in the mixture, dehydration occurs in stage 3: the first step with maximum rate is at 170°. The change to the lower temperature is partially caused by the dilution effect (see curve 3 in Fig. 1 – Ca(H₂PO₄)₂ \cdot H₂O + 20% quartz). The second step is at 220° and the third at 320°. Dehydration in the mixture comes to an end at 420°, i.e. at a temperature 80 deg lower than for Ca(H₂PO₄)₂ \cdot H₂O.

Fig. 2 Dehydration of Ca(H2PO4)2·H2O and its mixtures with SiO2·nH2O under quasi-isothermal-quasi-isobaric conditions. 1 - Ca(H2PO4)2·H2O + 50% SiO2·nH2O; 2 - Ca(H2PO4)2·H2O + 5% SiO2·nH2O; 3 - Ca(H2PO4)2·H2O;

Under Q conditions, the graduality of the decomposition and the changes caused by the impurities are more distinctly observed (Fig. 2). $SiO_2 \cdot nH_2O$ accelerates the dehydration significantly at temperatures over 265° (when 2 moles of H₂O is liberated), and the amount of water liberated up to 330° increases.

The results of chromatographic analysis (Table 2) show that the content of monophosphate in the mixture with $SiO_2 \cdot nH_2O$ (50%) is twice that in pure Ca(H₂PO₄)₂·H₂O heated up to 250°, whereas the content of watersoluble P₂O₅ is 11.6% lower in the mixture. It could be concluded that the H₃PO₄ formed during the dehydration of Ca(H₂PO₄)₂·H₂O interacts with SiO₂·nH₂O. As a result, the polycondensation of calcium phosphates decreases. CaHPO₄ is formed in the mixture (Table 1).

During heating from 250° to 600° , the content of monophosphates decreases. As a result of the dehydration of CaHPO₄, γ -Ca₂P₂O₇ is formed (Table 1). The content of diphosphate is higher and the content of long-chain polyphosphates (insoluble by ion-exchange) is lower in the mixture than in the products heating of of the pure salt.

Mixtures with glauconite

Dehydration of the mixture with 5% of glauconite in an uncovered crucible occurs in four stages (Fig. 3). The temperatures of the maximum rates of steps 1, 3 and 4 increase by 10-15 deg (the 2nd step disappears), but the TG curves indicate acceleration of the loss of water from the mixture. The temperature of the last step is 45 deg lower than for the pure salt.

From the mixture with 50% of glauconite, water is liberated in 2 stages, with maximum rates at 175° and 305° . 1.5 moles of H₂O is lost from Ca(H₂PO₄)₂·H₂O during heating up to 240°, and from the mixtures with 5% or 50% of glauconite at 230° and 180°.

The Q-TG curves also indicate the accelerating effect of glauconite on the dehydration of $Ca(H_2PO_4)_2 \cdot H_2O$ in the first step, and is completed at a temperature 50 deg lower under Q conditions.

In the mixture with glauconite (50%) heated up to 250° , the content of water-soluble monophosphate is 1.5 times lower than that in the ion-exchange-soluble one (Table 2). The results of X-ray analysis indicate that the content of CaHPO4 is analogous with that in the mixture with SiO₂ \cdot nH₂O. The interaction of glauconite with the intermediates of dehydration of Ca(H₂PO₄)₂ \cdot H₂O indicates an increase in the water-soluble K₂O content in the heated mixtures, which does not occur with glauconite itself (Table 2). During heating up to 400° , the content of diphosphate in the mixture in-

creases up to 30 relative %. At the same time, the content of insoluble (by ion-exchange) polyphosphates is lower than in the heating products of $Ca(H_2PO_4)_2 \cdot H_2O$. The X-ray analysis results show the contents of Al, Fe, K-phosphates (Table 1). $Ca(H_2PO_4)_2 \cdot H_2O$ does not decompose 100% in the reaction giving H₃PO₄ during heating, and therefore there is $Ca(PO_3)_2$ in the dehydrated mixture too, which coincides with the results in [3].

Fig. 3 Dehydration of glauconite, Ca(H2PO4)2·H2O and their mixtures under dynamic conditions (10 deg ·min⁻¹). Open crucible. 1 - glauconite; 2 - Ca(H2PO4)2·H2O + 50% glauconite; 3 - Ca(H2PO4)2·H2O + 5% glauconite; 4 - Ca(H2PO4)2·H2O

Conclusions

It has been established that $SiO_2 \cdot nH_2O$ and glauconite react with the intermediates of dehydration of $Ca(H_2PO_4)_2 \cdot H_2O$ on heating. New phosphates (silicophosphates and Al, K, Fe mixed phosphates) are formed, and accordingly the degree of polymerization of the calcium polyphosphates decreases. The dehydration of $Ca(H_2PO_4)_2 \cdot H_2O$ is accelerated. Glauconite affects the loss of water from $Ca(H_2PO_4)_2 \cdot H_2O$ from the beginning of dehydration and does this more thoroughly than $SiO_2 \cdot nH_2O$.

Fig. 4 Dehydration of Ca(H2PO4)2·H2O and its mixtures with glauconite under quasi-isothermal-quasi-isobaric conditions. 1 - Ca(H2PO4)2·H2O + 50% glauconite; 2 - Ca(H2PO4)2·H2O + 5% glauconite; 3 - Ca(H2PO4)2·H2O

References

1 A. Zdukos and T. Vaimakis, Zh. Neorgan. Khim., 32 (1987) 2351.

2 M. Veiderma and J. Pyldme, Zh. Neorgan. Khim., 21 (1976) 10.

3 M. Pyldme, K. Tynsuaadu, F. Paulik, J. Paulik and M. Arnold, J. Thermal. Anal., 17 (1979) 479.

4 Crystallographic Properties of Fertilizer Compounds, Chem. Eng. Bull., 6 (1967).

5 A.Mal'shikov, Zh. Neorgan. Khim., 32 (1987) 2370.

Zusammenfassung — Mittels röntgenographischer, chromatographischer und thermischer (unter dynamischen und quasi-isothermen-quasi-isobaren Bedingungen) Analyse wurde die thermische Dehydratation eines Gemisches aus Ca(H2PO4)2·H2O, Kieselsäure und Glaukonit untersucht.

J. Thermal Anal., 36, 1990

Es wurde festgestellt, daß die Dehydratation von Ca(H2PO4)2·H2O im Gemisch beschleunigt abläuft. SiO2·nH2O und Glaukonit reagieren mit den Zwischenprodukten der Dehydratation von Ca(H2PO4)2·H2O und formen Silikophosphate und Al,K,Fe-Phosphate. Der totale Polymerisationsgrad von Calciumpolyphosphat ist im Gemisch geringer als in Ca(PO3)2 selbst.